Conceptos previos

Propiedades sobre límites de sucesiones reales:

1) Si α n y β n son dos sucesiones ϵ IR tales que:

$$\lim_{n\to\infty}\alpha n=L \wedge \lim_{n\to\infty}\beta n=L'$$

Entonces:

$$\lim_{n\to\infty}(\alpha \mathbf{n}+\beta \mathbf{n})=\lim_{n\to\infty}\frac{n^2}{n^2}+\lim_{n\to\infty}\beta \mathbf{n}=L+L'$$

Ejemplo:

$$\lim_{n\to\infty} \frac{n^2+n}{n^2} = \lim_{n\to\infty} \frac{n^2}{n^2} + \lim_{n\to\infty} \frac{n}{n^2}$$

2)
$$\lim_{n\to\infty} (\alpha n \times \beta n) = \lim_{n\to\infty} \alpha n \times \lim_{n\to\infty} \beta n = L \times L'$$

Ej.:
$$\lim_{n \to \infty} \frac{n^2 - 1}{n^2} = \lim_{n \to \infty} \frac{n + 1}{n} + \lim_{n \to \infty} \frac{n - 1}{n}$$
$$= \left[\lim_{n \to \infty} (1 + \frac{1}{n})\right] \times \left[\lim_{n \to \infty} (1 - \frac{1}{n})\right]$$

$$= 1 \times 1 = 1$$

3) Si α n es una sucesión convergente, esto es $\lim_{n\to\infty} \alpha n = L$ y k es un numero real, entonces la sucesión k α n también es convergente y se cumple

$$\lim_{n \to \infty} (k \times \alpha \mathbf{n}) = k \times \lim_{n \to \infty} \alpha \mathbf{n}$$

Ej.:
$$\lim_{n \to \infty} \frac{3}{n} = 3 \lim_{n \to \infty} \frac{1}{n} = 3 \times 0 = 0$$

4) Si αn y βn dos sucesiones convergentes tales que

$$\lim_{n\to\infty}\alpha\mathbf{n}=L;\ \lim_{n\to\infty}\beta\mathbf{n}=L';L'\neq0$$

Entonces:

$$\lim_{n \to \infty} \frac{\alpha \mathbf{n}}{\beta \mathbf{n}} = \frac{\lim_{n \to \infty} \alpha n}{\lim_{n \to \infty} \beta \mathbf{n}}$$

NOTA:

- 1) Es posible que la suma de dos sucesiones divergentes sea convergente.
- 2) Si αn y βn son dos sucesiones tales que $\alpha n \ge \beta n$ u cuyos limite son, respectivamente.

$$\lim_{n \to \infty} \alpha \mathbf{n} = \mathbf{L}$$
 $\lim_{n \to \infty} \beta \mathbf{n} = \mathbf{L}'$, entonces : $\mathbf{L} < \mathbf{L}'$

3) Si: $\lim_{n\to\infty} \alpha \mathbf{n} = \mathbf{L}$, entonces

$$\lim_{n\to\infty}(-\alpha n)=-\lim_{n\to\infty}\alpha n=-L$$

Observación **importantísimo**: no siempre es posible aplicar las propiedades "literalmente" sobre límites de sucesiones, si antes no se ha realizado una transformación a la expresión que define el término general de la sucesión.

Ej.:
$$\lim_{n\to\infty} \frac{3n+1}{5n-2}$$

Si aplicamos la propiedad del cuociente de límites, tenemos.

$$\lim_{n\to\infty}\frac{3n+1}{5n-2}=\frac{\lim_{n\to\infty}3n+1}{\lim_{n\to\infty}5n-2}=\frac{\infty}{\infty}=\infty$$

Es decir carece de límite finito, ya que el denominador y el numerador no tienen límite real definido.

Sin embargo podemos simplificar el numerador y el denominador por "n", de manera que el termino general αn , se transforme (debemos buscar siempre la forma $\frac{1}{n^p}$ ya que $\lim_{n\to\infty}\frac{1}{n^1}=0$; $p\in IR$)

Entonces:

$$\lim_{n \to \infty} \frac{3n+1}{5n-2} = \lim_{n \to \infty} \frac{\frac{3n+1}{n}}{\frac{5n-2}{n}} = \lim_{n \to \infty} \frac{3+\frac{1}{n}}{5-\frac{2}{n}} = \lim_{n \to \infty} \frac{3n+1}{5n-2} = \frac{3}{5}$$

Nota: Para cualquier limite de una sucesión α n que tiene por término general un cuociente de dos polinomios, e divide el numerador y el denominador por la potencia de "n" que tiene el mayor exponente en dichos polinomios.

Ej.:1)

$$\lim_{n \to \infty} \frac{-4n^4 - 5n + 6/n^4}{3n^4 + 7n^2 + 8n - 1/n^4} = \lim_{n \to \infty} \frac{-4 - \frac{5}{n^3} + \frac{6}{n^4}}{3 + \frac{7}{n^2} + \frac{8}{n^3} - \frac{1}{n^4}} = -\frac{4}{3}$$

Ej.:2)

$$\lim_{n \to \infty} \frac{\sqrt{n^2 - n + 2/:n}}{6n - 8/:n} = \lim_{n \to \infty} \frac{\sqrt{\frac{n^2 - n + 2}{n^2}}}{6 - \frac{8}{n}} = \lim_{n \to \infty} \frac{\sqrt{1 - \frac{1}{n} + \frac{2}{n^2}}}{6 - \frac{8}{n}} = \frac{1}{6}$$

Ejercicios:

I) Calcule el límite de cada una de las siguientes sucesiones cuando:

$$n \to \infty$$

$$1)\frac{3n^2-2n+5}{n^2} \quad 2)\frac{2n^2-5n+7}{3n^2} \quad 3)3n\frac{3n}{n+1} \quad 4)\frac{(n+1)^2}{2n^2} \quad 5)\frac{2}{n^3} \div \frac{5}{n^2}$$

6)
$$\frac{n^2+3}{n^2} + \frac{n^2+1}{n^3}$$
 7) $\frac{n^4+n^3}{7n^5}$ 8) $\frac{(4n+5)(7-n^3)}{n^4}$

II) Dadas las sucesiones:

Si
$$\alpha n = \frac{3n+1}{n}$$
 y $\beta n = \frac{n^2+1}{n^3}$ calcule $\lim_{n\to\infty} de$:

1)
$$\alpha n - \beta n$$
 2) $\alpha n \times \beta n$ 3) $\frac{\alpha n}{\beta n}$ 4) $\alpha n + \beta n$ 5) $\frac{3}{7}\alpha n + 8\beta n$

III) Calcule los siguientes límites $\lim_{n\to\infty} de$:

$$1)\frac{n^2+5n-2}{2n^2+1} \qquad 2)\frac{n^4-n+2}{3n^4-n^2} \quad 3)\frac{2n^3-n^2+1}{7n^3+n-3} \quad 4)\frac{4}{\sqrt{n+7}+\sqrt{n}} \quad 5)\frac{1}{\sqrt{n+2}\sqrt{n}}$$

6)
$$\left| \sqrt{n(n+2)} - n \right|$$
 7) $\frac{9}{\sqrt{n+100} + \sqrt{n}}$ 8) $\left| \sqrt{2n^2 + 3n - n} - \sqrt{2n^2 + 2} \right|$

Respuestas:

I)1) 3	II)1) 3	III)1)1/2
2)2/3	2) 0	2)1/3
3) 0	3) ∞	3)2/7
4)1/2	4)3	4)0
5) 0	5)9/7	5)0
6) 1		6)2
7) 0		7)0
8)-4		$8)\frac{3}{4}\sqrt{2}$

Es el caso de una sucesión muy particular y de gran interés en matemáticas especialmente en el cálculo infinitesimal.

La sucesión

 $An = (1 + 1/n)^n$, si aplicamos límites a esta sucesión se obtiene

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n$$

Con la ayuda de una calculadora científica, se ha determinado algunos valores para esta sucesión.

n	1	2	3	10	100	1000	1000000
An	2	2,25	2,3703	2,5937	2,7169	2,718146	2,718282

En la tabla vemos que para valores significativamente grandes de n, el valor de An se "estabiliza" y crece muy débilmente.

Esta sucesión es creciente y acotada An € IN; 2≤An≤3, luego tiene límite. Al límite de esta sucesión se le denomina numero e

Luego:
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
E=2,7182818284590452353602

Donde e es un número irracional (desarrollo decimal infinito no periódico) NOTA: El matemático suizo Leonard Euler (1707-1783), discípulo de Jean Bernoulli, estudio esta situación, cuyo límite se denomina con la letra inicial "e" de su apellido.

Ejemplo: Calculemos los siguientes limites

1.

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n+7}$$

Que se escribe como:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \times \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^7$$

$$E \qquad \times \qquad 1$$

2

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{3n} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{n} \right)^n \right]^3$$

$$= e^3$$

3.

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$$
 que se escribe como

$$\lim_{n\to\infty} \left(1 - \frac{1}{n}\right)^n \text{ si ahora hacemos que p} = -n$$

$$\lim_{n\to\infty}\left(1+\frac{1}{p}\right)^{-p}=\lim_{n\to\infty}\ [\left(1+\frac{1}{p}\right)^p]^{-1}$$

$$= e^{-1} = \frac{1}{e}$$

$$4.\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n \text{ que equivale a}$$

$$\lim_{n \to \infty} \frac{\left(1 + \frac{1}{n+5}\right)^n \times \left(1 + \frac{1}{n+5}\right)^5}{\left(1 + \frac{1}{n+5}\right)^5} = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n+5}\right)^{n+5}}{\left(1 + \frac{1}{n+5}\right)^5}$$

$$=\frac{e}{1}=e$$

Ejercicios:

Calcule los límites de las siguientes sucesiones cuando $\mathbf{n} \to \infty$

1)
$$(1+\frac{1}{n})^{n+6}$$

$$(1+\frac{1}{n})^{2n}$$

2)
$$(1 + \frac{1}{n})^{2n}$$
 3) $(1 + \frac{1}{n})^{-4n}$

4)
$$(1+\frac{1}{n+4})^n$$

$$5)(1-\frac{1}{v})^{2n}$$

4)
$$\left(1 + \frac{1}{n+4}\right)^n$$
 5) $\left(1 - \frac{1}{n}\right)^{2n}$ 6) $\left(1 + \frac{1}{n+2}\right)^{n+2}$

7)
$$((n+1)/n)^{9n}$$

8)
$$((n+1)/n)^{n+10}$$

Respuestas:

2.
$$e^2$$

$$3. e^{-4}$$

I) encuentra el valor límite de cada una de las sucesiones.

1)
$$\alpha n = \frac{1}{n}$$

1)
$$\alpha n = \frac{1}{n}$$
 2) $\alpha n = -3 + \frac{(-1)^n}{n}$ 3) $\alpha n = \frac{n+2}{n}$ 4) $\alpha n = \frac{(-1)^{n+1}}{n}$

3)
$$\alpha n = \frac{n+2}{n+2}$$

4)
$$\alpha n = \frac{(-1)^{n+1}}{n}$$

5)
$$\alpha n = 2 + \frac{1}{n+1}$$
 6) $\alpha n = \frac{3n-2}{n+1}$ 7) $\alpha n = \frac{2n-1}{2n}$ 8) $\alpha n = 1 + \frac{1}{n}$

6)
$$\alpha n = \frac{3n-2}{n+1}$$

7)
$$\alpha n = \frac{2n-1}{2n}$$

8)
$$\alpha n = 1 + \frac{1}{n}$$

II) Dada la sucesión
$$\alpha$$
n= $1 + \frac{1}{n}$

a) ¿Para qué valor de n se verifica que
$$\alpha$$
n \in $1-\frac{1}{2}$], $1+\frac{1}{2}$ [?

b) Si se considera
$$\varepsilon = \frac{3}{10}$$
, ¿para qué valor de n se verifica que $\alpha n \in]1 - \frac{3}{10}, 1 + \frac{3}{10}[?]$

III]) Dada la sucesión $\alpha n = -3 + \frac{(-1)^n}{n}$; ¿Para qué valor de ϵ se cumple que

$$\alpha n =]-3 - \epsilon$$
, $-3 + \epsilon[?]$

IV) Indica cuales de las siguientes sucesiones son convergentes y cuales son divergentes.

$$1)\frac{n^2}{n^2+1}$$

$$(2)^{\frac{n^2+1}{n}}$$

$$1)\frac{n^2}{n^2+1} \qquad 2)\frac{n^2+1}{n} \qquad 3)\frac{3n^2-1}{n} \qquad 4)\frac{2n-1}{n} \qquad 5)\frac{2n}{2n+1} \qquad 6)\frac{1}{n+1}$$

$$4)^{\frac{2n-1}{n}}$$

$$5)\frac{2n}{2n+1}$$

$$6)\frac{1}{100+10}$$

$$7)^{\frac{2n-8}{3}} \qquad 8)^{\frac{2n-3}{n+1}}$$

$$8)\frac{2n-3}{n+1}$$

Respuestas:

- I) 1)0

- II)1) $n \ge 3$ III) $\epsilon > \frac{1}{n}$ IV) 1) convergentes
- 2)-3
- 2) n≥4

2) divergentes

- 3)1

3) divergentes

4)0

5)2

4) convergentes

5) convergentes

6)3

6) convergentes

7)1 8)1

- 7) divergentes
- 8) convergentes